IPv6 integration in operational networks

Jean-Marc Uzé
juze@juniper.net

Conference: Where are we with IPv6?
Paris, October 29, 2002
Motivations for Deploying IPv6
Extending the reach of Internet

IPv4 limitation

Source: http://www.ripe.net
Motivations for Deploying IPv6
Extending the reach of Internet

IPv6 potential

Source: http://www.ripe.net
Motivations for Deploying IPv6
Extending the reach of Internet

MOBILITY
Motivations for Deploying IPv6

Peer-to-peer applications model

+ Permanent connections
ISP general concerns

- Turn on new service revenues
- Reduce operating costs
- Optimize bandwidth
- Reduce depreciation
How to start?

- By profitable services? Not a short term...
- No D-Day
- Start where it is easy and prepare the coming challenge
Integrating IPv6 in ISP networks

- But what if IPv6 can be deployed in a seamless way without expensive upgrades and operational costs?

- IPv6 deployment requires preservation of:
 - Reliability
 - Performance
 - Services
IPv6 integration process

- **Network readiness**
 - Required upgrade?
 - Equipment limitations?

- **Design**
 - Based on existing infrastructure

- **Migration phases**

- **Operational procedures**
IPv6 routers Taxonomy

IPv6 non upgradeable router
- Runs IPv4 only, maybe MPLS
- Issue: how much cost the hardware and software upgrade (CAPEX + OPEX)?

IPv6 upgradeable router
- Justification generally linked to short term revenues...
- Ready

IPv6 qualified router
- Will run IPv4 only, maybe MPLS
IPv6 Qualified Router for ISPs
What means really Dual Stack?

- Addressing & Forwarding
- Routing Protocols
- Service Richness
- Operational Efficiency
IPv6 Addressing

- Dual IP addressing on the same interface
- Neighbor discovery
- ICMPv6

```
interfaces {
  ge-0/1/0 {
    unit 0 {
      family inet {
        address 157.168.0.5/24;
      }
      family inet6 {
        address 8028:20::1/64;
      }
    }
  }
}
```
IPv6 Qualified Router for ISPs

What means really Dual Stack?

- Addressing & Forwarding
- Routing Protocols
- Service Richness
- Operational Efficiency
Routing Protocols

- **Static routing**
 - May be used with customer sites

- **IGP**
 - IPv6 unicast can be routed by RIPng, OSPFv3, or ISIS
 - Current ISIS backbone don’t need IGP upgrade
 - Current OSPF backbone need to:
 - Migrate to IS-IS
 - Or add/deploy OSPFv3

- **BGP-MP**
 - Just add the IPv6 routing in existing M-BGP set-up
 - Can use same design
 - Can be set-up over v4 or v6
 - Just add v6 routing over BGP/v4 sessions
 - Use BGP over v6 in case of IPv6 deployment in IPv4 tunnels
Static Routing example

```
routing-options {
    rib inet6.0 {
        static {
            route 8028:10::1/128
            next-hop 8028:25::2;
        }
    }
}
```
RIPng Routing example

protocols {
 ripng {
 group igp {
 neighbor ge-0/1/0.0;
 }
 }
}
OSPFv3 example

```plaintext
interfaces {
  so-0/0/0 {
    unit 0 {
      family inet {
        address 10.19.6.2/24;
      }
      family inet6 {
        address 9009:6::2/64;
      }
    }
  }
  lo0 {
    unit 0 {
      family inet {
        address 10.245.71.6/32;
      }
      family inet6 {
        address feee::10:255:71:6/128;
      }
    }
  }
}
protocols {
  ospf3 {
    area 0.0.0.2 {
      interface so-0/0/0.0;
      interface lo0.0 {
        passive;
      }
    }
  }
}
```
External M-BGP example

interfaces {
 ge-0/1/0 {
 unit 0 {
 family inet {
 address 11.19.1.2/24;
 }
 family inet6 {
 address ::11.19.1.2/126;
 }
 }
 }
 routing-options {
 autonomous-system 100;
 }
}

protocols {
 bgp {
 group ebgp_both {
 type external;
 local-address 11.19.1.2;
 family inet {
 unicast;
 }
 family inet6 {
 unicast;
 }
 peer-as 1;
 neighbor 11.19.1.1;
 }
 }
}
Multicast Routing

- Performance and scaling for IPv6 multicast clearly important
- PIMv2 to support for IPv4 and IPv6
- Multicast Listener Discovery (MLD) protocol to discover the presence of multicast listeners
 - Derived from IGMPv2
 - Uses ICMPv6 message type instead of IGMP message types
IPv6 Qualified Router for ISPs
What means really Dual Stack?

- Addressing & Forwarding
- Routing Protocols
- Service Richness
- Operational Efficiency
IP Services

- Routers must be able to perform intelligent IPv6 packet handling
 - Filtering - Selective forwarding and discarding
 - Monitoring - Sampling, counting, logging, etc.
 - QoS - Policing, shaping, queuing, profiling, etc.
 - Forwarding - Directing packets based on any header information

- All classification and packet handling must be done in hardware to truly minimize performance impact

- IP services and performance must not be mutually exclusive
Flexible bandwidth

```
firewall {
    family inet6 {
        filter LimitCE-A2{
            policer LimCE-A2 {
                if-exceeding {
                    bandwidth-limit 1m;
                    burst-size-limit 100k;
                }
                then discard;
            }
            term 1 {
                from {
                    source-address {
                        3ffe:1411:2205::/48;
                    }
                }
                then {
                    policer LimCE-A2;
                    accept;
                }
            }
        }
    }
}
```
Security

- Security on routers is more important than ever
 - for customer and infrastructure protection

- On-going DoS work in IPv4 to be extended to IPv6

- Hardware-based packet handling, filtering optimize key security actions

- SNMPv3 improves router authentication
Source Address Verification

Attack with Source address = 3ffe:1411:2205::5

uRPF

3ffe:1411:2205::/48 [BGP/170]
> via so-0/0/0/0.0

3ffe:1451:2305::/48

3ffe:1411:2205::/48 [BGP/170]
Real-time DDoS Identification

Policy-Options
- Community victim members 100:100;
- Policy-statement set-dest-class
 - Term 1
 - From
 - Protocol bgp;
 - Community victim;
 - Then
 - Destination-class dcu-victim;
 - Accept;

Interfaces
- So-2/0/1
 - Unit 0
 - Family inet6
 - Address ffeee::10:255:73:2/128;
 - Accounting
 - Destination-class-usage;
 - Accounting
 - Destination-class-usage;

Routing-options
- Forwarding-table
 - Export set-dest-class;
Real-time DDoS Identification
Real-time DDoS Identification

BGP update
3ffe:1541:2305::12/128
Community 100:100

3ffe:1541:2305::12
IPv6 header includes traffic class and flow label
- Traffic class function = DSCP
- Largely undefined flow label identifies a traffic flow that needing special handling, i.e. voice, video, etc.

IPv6 routers must be able to use traffic class and flow label without incurring performance cost
VPNs are a valuable service
- Provider managed IPv4 VPN models have been successful
- Established VPN technologies used for IPv4 must be carried over to IPv6
- Services offered as part of a VPN, i.e. QoS, will still be required for IPv6
- VPN management must be able to support IPv4 and IPv6 traffic
IPv6 Qualified Router for ISPs
What means really Dual Stack?

- Addressing & Forwarding
- Routing Protocols
- Service Richness
- Operational Efficiency
IPv6 Management must be integrated in existing management systems

SNMP over v6 with IPv6 MIBs

Intuitive CLI

IPv6 Accounting

APIs (e.g. XML) for OSS integration
 - Reduce latency between new vendor feature/service and OSS integration
 - Operational efficiency hinges on OSS integration

Router operations over IPv6
 - telnet, ssh, ftp, ping, traceroute...
Robustness and Reliability

- Common support of features, services on every interface across all platforms
- Same approach for hardware-based packet handling as IPv4
 - Performance is critical
 - Maintaining SLA agreement for IPv4 while operating IPv6
- Separation of routing and control planes
- Graceful restart mechanisms
 - BGP, OSPF, IS-IS, RSVP, LDP...
- Linear software releases continuity to ensure common support and evolution
Integration of non IPv6 capable routers

- IPv6 in IPv4 tunnels
 - GRE or IP-IP Tunnels
 - Only possible:
 - with performance (hardware tunneling)
 - at small scale for manageability

- Connecting IPv6 Islands with IPv4 MPLS
 - Requires MPLS capable routers in the core
IPv6 in IPv4 tunnels

```
interfaces {
  so-0/0/0 {
    unit 0 {
      family inet {
        address 100.255.3.2/24;
      }
    }
  }
  gr-1/0/0 {
    unit 0 {
      tunnel {
        source 100.255.3.2;
        destination 100.255.2.1;
      }
      family inet6 {
        address 9009:6::2/64;
      }
    }
  }
}
```
Connecting IPv6 Islands with IPv4 MPLS (1)

interfaces {
 so-0/0/0 {
 unit 0 {
 family inet {
 address 100.255.3.2/24;
 }
 family inet6;
 family mpls;
 }
 }
 ge-0/1/0
 unit 0 {
 family inet6 {
 address 8002::1/126;
 }
 }
 lo0 {
 unit 0 {
 family inet {
 address 10.245.71.6/32;
 }
 family mpls;
 }
 }
 routing-options {
 autonomous-system 100;
 }
}
Connecting IPv6 Islands with IPv4 MPLS (2)

protocols {
 rsvp {
 interface so-0/0/0.0;
 }
 mpls {
 ipv6-tunneling;
 label-switched-path to_PE1 {
 to 10.245.72.6;
 }
 interface so-0/0/0.0;
 }
 bgp {
 group to_PE1 {
 type internal;
 local-address 10.245.71.6;
 family inet6 {
 labeled-unicast {
 explicit-null;
 }
 export red-export;
 neighbor 10.245.72.6;
 }
 }
 }
 ospf {
 traffic-engineering;
 area 0.0.0.0 {
 interface so-0/0/0.0;
 interface lo0.0 {
 passive;
 }
 }
 }
}
Connecting IPv6 Islands with IPv4 MPLS (3)

protocols (next)

ripng {
 group to_CE-B3 {
 export red-import;
 neighbor ge-0/1/0.0;
 }
}
}

policy-options {
 policy-statement red-export {
 term 1 {
 from protocol ripng;
 then accept;
 }
 term 2 {
 then reject;
 }
 }
 policy-statement red-import {
 from protocol bgp;
 then accept;
 }
}

Conclusion

- The transition from IPv4 to IPv6 will be gradual
- ISPs can integrate IPv6 at a reasonable cost by leveraging existing investment for a seamless integration
 - Production-caliber IPv6
 - Internet-scale
 - Fully-featured IPv6
 - Genuinely-deployable IPv6
- IPv6 qualified routers must support solutions to bypass potential non IPv6 capable routers
- IPv6 education and training will be determinant to develop a business strategy
Thank you!

http://www.juniper.net