IVI - IPv4/IPv6
Coexistence and Transition

Xing Li
2009-03-04
Unexpected situation
Why Is This Happening?

- No transition plan
- Declared victory before the hard part started
- No real long term plan
- No realistic estimation of costs
- No support for the folk on the front lines
- Victory will be next month
Why Is This Happening?

No transition plan
Declared victory before the hard part started
No real long term plan
No realistic estimation of costs
No support for the folk on the front lines
Victory will be next month
This Describes:
 a - The invasion of Iraq
 b - IPv6
 c - DNSSec
 d - All of the above
Transition

- IPv4 and IPv6 is NOT compatible
- There is NO flag day
- Transition is REALLY difficult
IPv6 Road Map
Transition methods

• Dual-stack
• Tunneling
• Translation
The IP infrastructure at crossroad

IPv4/NAT

IPv6 only

Something new coming along?

IP4-6 coexistence
Crossroad

IPv6 Workshop, Sigcomm 2007
Background

CERNET (IPv4)
2,000 universities connected
20M users

CNGI-CERNET2 (IPv6)
100 universities connected
400K users

IPv4-accessible servers
The lessons learned

• The only viable option for future Internet is IPv6
 – The transitions can only starts when the part of it is pure IPv6
• The scenarios of building new IPv6 network for the unwired population
 – The cost-effective way for building a new infrastructure
• The natural transition
 – Construction and operation single stack costs less than dual-stack
 – Construction and operation simple (stateless) network costs less than complex (stateful) network
• The resources should be shared via inter-communication
 – The IPv6 servers should be IPv4 accessible
 – The IPv4 servers should be IPv6 accessible
IPv6 promotion
- Dual stack
- IPv6 single stack + IPv4 accessible

IPv6 S Curve

Many IPv6 Servers Few IPv4 Servers

Many IPv4 Servers Few IPv6 Servers
The IVI model
IVI address format

<table>
<thead>
<tr>
<th>0</th>
<th>32</th>
<th>40</th>
<th>64</th>
<th>72</th>
<th>96</th>
<th>127</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIR Prefix</td>
<td>IPv4 addr</td>
<td>Entirely 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prefix part Host part

For example
LIR consists of ISP prefix (usually /32) and IVI flag
CERNET/CNGI-CERNET2’s selection
- LIR = 2001:da8:ff00::/40
- ISP’s IVI service IPv4 address mapping
 • 202.38.108.0/24 → 2001:250:ffca:266c:0000::/64
- ISP’s non-IVI service IPv4 address mapping
 • 202.38.96.0/20 → 2001:250:ffca:2660:0000::/60
- Other ISP’s IPv4 address mapping
 • 0.0.0.0 → 2001:da8:ff00::/40
 • 18.181.0.31/32 → 2001:250:ff12:b500:1f00::/72
Address Mapping (1)
Address Mapping (2)
Conceptual example
IVI routing

Longest prefix match
IVI DNS service

- Normal DNS
 - Algorithm based

- DNS translation
 - Algorithm based

![Diagram of DNS service](image)

Figure 4: Normal DNS Service

Figure 5: DNS Record Translation Service
Stateless (1:1) operation

• Stateless
 – SIIT extension
 • Based on ISP’s prefix
 • The mapping between IPv4 and IPv6IPv6 is based on algorithm
 • Support both IPv6 initiated and IPv4 initiated communications
Stateful (1:N) operation

• Stateful
 – NAT-PT (NAPT-PT) improvement
 • IPv4 address multiplexing
 • Based on ISP’s prefix
 • Support IPv6 initiated communication
IVI Reachability

- $4\text{Host1} \rightarrow \text{IVI1}$ (stateless)
- $\text{IVI1} \rightarrow 4\text{Host1}$ (stateless)
- $4\text{Host1} \rightarrow 6\text{Host1}$
- $6\text{Host1} \rightarrow 4\text{Host1}$ (stateful)
- $4\text{Host1} \rightarrow 4\text{Host2}$
- $4\text{Host2} \rightarrow 4\text{Host1}$
- $6\text{Host1} \rightarrow \text{IVI1}$
- $\text{IVI1} \rightarrow 6\text{Host1}$
- $6\text{Host1} \rightarrow 6\text{Host2}$
- $6\text{Host2} \rightarrow 6\text{Host1}$
- $\text{IVI1} \rightarrow \text{IVI2}$
- $\text{IVI2} \rightarrow \text{IVI1}$

Route Advertisements:
- R1: its IPv4 LAN
- R2: its IPv4 LAN
- R3: its IPv6 LAN
- XLATE: IPv4 IVI prefix
- possible IPv4 overlay
- prefix
- XLATE: IVI /40

Figure 3: IVI Reachability example
IPv4 initiated communication (1:1)

IPv4 client \(\rightarrow\) IPv4 \(\rightarrow\) IPv4 to IPv6 translation

\[\text{src}=59.66.24.42, \text{dst}=202.38.114.1\]

\[\text{src}=2001:250:ff3b:4218:2a00::, \text{dst}=2001:250:ffca:2672:0100::0\]

IPv6 to IPv4 translation

\[\text{src}=2001:250:ffca:2672:0100::0, \text{dst}=202.38.114.1\]

\[\text{src}=59.66.24.42, \text{dst}=2001:250:ff3b:4218:2a00::\]
IPv6 initiated communication (1:1)

- Ask for AAAA record or A record
- Ask for AAAA record
- Stateless

IPv6 to IPv4 translation:
- src=202.38.108.5 src=2001:da8:ffca:266c:0500::
- dst=18.7.22.83 dst=2001:da8:ff12:0716:5300::

IPv4 to IPv6 translation:
- src=18.7.22.83 src=2001:da8:ff12:0716:5300::
- dst=202.38.108.5 dst=2001:da8:ffca:266c:0500::

Global DNS -> IVI DNS -> IPv4 server

IVI DNS -> IPv6 client

IPv4

www.mit.edu
IPv6 initiated communication (1:N)

IPv4

Global DNS

Ask for AAAA record or A record

IVI DNS

IPv4 pool 202.38.102.0/24

stateful

IPv4

www.mit.edu

Ask for AAAA record

IPv6

IPv6 non-IVI client

IPv6 to IPv4 translation

src=202.38.102.1#2000

dst=18.7.22.83#80

dst=2001:da8::100#3000

IPv4 to IPv6 translation

src=2001:da8::100#3000

dst=2001:da8:ff12:0716:5300::#80

src=18.7.22.83#80

dst=202.38.108.5#2000

state

state
IVI ICMP extension

- Operation
 - IPv4 → IPv6
 - IPv6 → IPv4
Stateless 1:N operation

IPv4 address: 202.38.108.5

IPv6 addresses:
- 2001:da8:ffca:266c:0500::4:0 (port 84)
- 2001:da8:ffca:266c:0500::4:1 (port 85)
- 2001:da8:ffca:266c:0500::4:2 (port 86)
- 2001:da8:ffca:266c:0500::4:3 (port 87)

Port number keep the same
The multiplexing ratio

- If the multiplexing ratio is 256.
- One IPv4 /8 can support 4.3 billion IPv6 hosts, same as the size of the global IPv4 space.
IVI multicast

- IVI supports PIM SSM
 - Group address mapping
 - RPF → mapped IPv6 address
 - PIM Spare-mode ALG

IVI Multicast Group Address Mapping

<table>
<thead>
<tr>
<th>IPv4 Group Address</th>
<th>IPv6 Group Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>232.0.0.0/8</td>
<td>ff3e:0:0:0:0:ff00:0000/96</td>
</tr>
<tr>
<td>232.255.255.255/8</td>
<td>ff3e:0:0:0:0:ff0f:ffff/96</td>
</tr>
</tbody>
</table>
Transition mechanisms

• When IPv4 addresses are running out
 – IPv4 + NAT
 • Short term solution
 – Pure IPv6
 • Cannot reach the global IPv4, unacceptable
 – Dual stack
 • The cost increases, ISPs want others to deploy dual stack
 – IVI IPv6
 • The cost is the same as the single stack, but the IPv6 host can be reached by global IPv4
Dual stack

- Global IPv4
- Direct access network
- IPv6 enterprise network

- Global IPv6
- Direct access network
- IPv6 enterprise network

- IPv4+IPv6
- Access network
- Enterprise network

- Not easy
• Encourage transition
Transition

IPv4 area
- Support IPv4
- V4 only Network

IPv6 area
- Support IPv6 (IVI)
- Support IPv6 (non-IVI)
- V6 only Network

Service
- Transition IPv4 IPv6

Network
- Support IPv4
- Support IPv6 (IVI)
- Support IPv6 (non-IVI)

User
http://www.ivi2.org/IVI/

IVI source code download

The IVI IPv4/IPv6 packet translation implementation as a Linux kernel patch is available below.
- IVI v0.5 kernel patch for Linux kernel 2.6.17
- IVI v0.5 kernel patch for Linux kernel 2.6.18

The IVI A/AAAA DNS proxy implementation is available below.
- IVIDNS v0.1 C code

For installing and configuration, please follow the instructions in the source code packages.

IVI test servers

- Access IPv4 server (202.38.114.129) across single-stack IPv6 network

IVI references

- IETF drafts:
 - Prefix-specific and Stateless Address Mapping (IVI) for IPv4/IPv6 Coexistence and Transition
 - IVI Update to SIIT and NAT-PT

Copyright CERNET Center 2005-2009